- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Halewood, Elisa_R (2)
-
Armbrust, E_Virginia (1)
-
Arrington, Eleanor_C (1)
-
Baetge, Nicholas (1)
-
Behrenfeld, Michael_J (1)
-
Berube, Paul (1)
-
Bienhold, Christina (1)
-
Biller, Steven (1)
-
Bodrossy, Levente (1)
-
Boiteau, Rene_M (1)
-
Brown, Mark (1)
-
Carlson, Craig (1)
-
Carlson, Craig_A (1)
-
Comstock, Jacqueline (1)
-
Eggers, Sarah_Lena (1)
-
Fuhrman, Jed (1)
-
Gradoville, Mary_R (1)
-
Graff, Jason_R (1)
-
Halsey, Kimberly_H (1)
-
Hanan, Erin_J (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We introduce the Global rRNA Universal Metabarcoding Plankton database (GRUMP), which consists of 1194 samples that were collected from 2003–2020 and cover extensive latitudinal and longitudinal transects, as well as depth profiles in all major ocean basins. DNA from unfractionated (>0.2 µm) seawater samples was amplified using the 515Y/926 R universal three-domain rRNA gene primers, simultaneously quantifying the relative abundance of amplicon sequencing variants (ASVs) from bacteria, archaea, eukaryotic nuclear 18S, and eukaryotic plastid 16S. Thus, the ratio between taxa in one sample is directly comparable to the ratio in any other GRUMP sample, regardless of gene copy number differences. This obviates a problem in prior global studies that used size-fractionation and different rRNA gene primers for bacteria, archaea, and eukaryotes, precluding comparisons across size fractions or domains. On average, bacteria contributed 71%, eukaryotes 19%, and archaea 8% to rRNA gene abundance, though eukaryotes contributed 32% at latitudes >40°. GRUMP is publicly available on the Simons Collaborative Marine Atlas Project (CMAP), promoting the global comparison of marine microbial dynamics.more » « less
-
Baetge, Nicholas; Halsey, Kimberly_H; Hanan, Erin_J; Behrenfeld, Michael_J; Milligan, Allen_J; Graff, Jason_R; Hansen, Parker; Carlson, Craig_A; Boiteau, Rene_M; Arrington, Eleanor_C; et al (, Limnology and Oceanography)Abstract Climate‐driven warming is projected to intensify wildfires, increasing their frequency and severity globally. Wildfires are an increasingly significant source of atmospheric deposition, delivering nutrients, organic matter, and trace metals to coastal and open ocean waters. These inputs have the potential to fertilize or inhibit microbial growth, yet their ecological impacts remain poorly understood. This study examines how ash leachate, derived from the 2017 Thomas Fire in California and lab‐produced ash from Oregon vegetation, affects coastal plankton communities. Shipboard experiments off the California coast examined how pre‐existing plankton biomass concentrations mediate responses to ash leachates. We found that ash leachate contained dissolved organic matter (DOM) that significantly increased bacterioplankton specific growth rates and DOM remineralization rates but had a negligible effect on bacterioplankton growth efficiency, suggesting low DOM bioavailability. Furthermore, ash‐derived DOM had a higher potential to accumulate in high biomass water, where pre‐existing DOM substrates may better support bacterial metabolism. Ash leachate had a neutral to negative effect on phytoplankton division rates and decreased microzooplankton grazing rates, particularly in low biomass water, leading to increased phytoplankton accumulation. Nanoeukaryotes accumulated in low biomass water, whereas picoeukaryotes andSynechococcusaccumulated in high biomass water. Our findings suggest that the influence of ash deposition on DOM cycling, phytoplankton accumulation, and broader marine food web dynamics depends on pre‐existing biomass levels. Understanding these interactions is critical for predicting the biogeochemical consequences of increasing wildfire activity on marine ecosystems.more » « less
An official website of the United States government
